

Release Note

Release Date : May 2020

Product Ver. : Civil 2020 (v3.1)

DESIGI OF CIVIL STRUCTURES

Integrated Solution System for Bridge and Divil Engineering

Enhancements

- 1. Batch Edit of Tendon Profile
- 2. Thickness Data of Plane Strain Element
- 3. Auto-generation of Tendon Profile Italy Precast Section Types
- 4. Geometric Nonlinear Construction Stage Analysis with Plate Elements
- 5. Set-Back for Saddle of Suspension Bridge
- 6. Concurrent Forces of Beam Elements for Time History Analysis
- 7. Rail traffic loads to AS 5100.2
- 8. Heavy Load Platform to AS 5100.2
- 9. Rating Vehicles to AS 5100.2
- **10. Horizontal Traffic Loads to AS 5100.2**
- 11. Rating Vehicles to CS 454
- **12.** Prestressed Girder Design to BS 5400
- 13. Improvement of Bridge Assessment to CS 454
- 14. AASHTO LRFD 8th Design Standard PSC/Composite Section, RC Section
- 15. AASHTO LRFD 8th Design Standard Steel Composite Section
- 16. AASHTO LRFD 8th Load Combination Auto Generation
- 17. Orthogonal effect of Seismic Load: AASHTO LRFD
- **18. RC Design as per IRS specifications**
- **19. Polish Design Report**

1. Batch Edit of Tendon Profile

- Batch editing is possible for the multiple tendon profiles at the same time.
- Tendon Name, Tendon Property, Number of Typical Tendons, Tendon Group
- Load > Temp./Prestress > Tendon Profile > Change Tendon Profile

2. Thickness Data of Plane Strain Element

- In earlier versions, thickness of plane strain element is fixed as 1 m.
- Now, thickness can be defined for the plane strain element, which will be used to calculate self weight.

3. Auto-generation of Tendon Profile – Italy Precast Section Types

Italy – VH80N, VH100N, VH130N, VH140, VH150 are newly added for the auto-generation of tendon profiles.

Structure > Wizard > PSC Bridge > Tendon Template Tendon Template \times Auto Generation \times Name prefix : strand 🖂 Use Prefix Name : strand Tendon Property Tendon \sim : Assigned Elements : Add \sim Tendon Group Default : \sim ... Code Italy Add 1 \sim No Name Property ~ Italy-VH strand_081 Tendon Туре 1 \sim Modify 2 strand_082 Tendon Name. VH150 \sim Set Property 3 strand_083 Tendon VH80N VH100N Origin Point m 4 strand_084 Tendon Move/Copy 5 ✓ Initialize Tendon Tem VH130N strand_085 Tendon 6 Delete strand_086 Tendon VH150 7 strand_087 Tendon 0K Cancel Import 8 strand_088 Tendon 9 strand_089 Tendon Export 10 strand_090 Tendon Auto Generation 11 strand_091 Tendon 12 strand_092 Tendon Reset Name 13 strand_093 Tendon 14 strand_094 Tendon 15 strand_095 Tendon 0K 16 strand_096 Tendon 17 strand_097 Tendon Cancel 18 strand_098 Tendon 19 strand_099 Apply Tendon ¥ Tendon Plane View 2.500 m Elevation View 4@ 1.420 m 📥 Section 1 2@ 0.900 m .500 m 0.500 m 2@ Pos, : ٥i Oj \$245 INTEL245373 INTE

4. Geometric Nonlinear Construction Stage Analysis with Plate Elements

- Construction stage analysis can be performed considering geometric nonlinear effects of plate element.
- Initial tangent displacement can be applied to plate elements as well as beam elements.
- Analysis > Analysis Control > Construction Stage > Initial Displacement for C.S

Construction Stage Analysis Control Data	×	
Final Stage O Other Stage CS22	Cable-Pretension Force Control Internal Force O External Force O Add O Replace	Harrison H
Restart Construction Stage Analysis Select Stages for Restart	Initial Force Control	
Analysis type Nonlinear Analys v Nonlinear Analysis Control O Independent Stage Include Equilibrium Element Nodal Forces	Change Cable Element to Equivalent Truss Element for Post C.S. Apply Initial Member Force to C.S. Initial Displacement for C.S.	
Include P-Delta Effect P-Delta Analysis Control Include Time Dependent Effect Time Dependent Effect	Initial Tangent Displacement for Erected Structures ● All	
No Load Case Name Type Case1 Case Add Modify Modify Modify Modify Modify Modify	Apply Camber Displacement to C,S, (if Defined) Consider Stress Decrease at Lead Length Zone by Post-tension Linear Interpolation Constant : Stress +	
< >>	Beam Section Property Changes O Constant O Change with Tendon	
	Frame Output ☐ Calculate Concurrent Forces of Frame ☑ Calculate Output of Each Part of Composite Section ☐ Self-Constrained Forces & Stresses	Message Window
	Save Output of Current Stage(Beam/Truss) Remove Construction Stage Analysis Control Data	CONSTRUCTION STEP NO.: 86 / 89 STAGE NO: 65 STEP NO: 1 ENTRY HNASE FOR REMUMBERING
Construction	OK Cancel	ENTRY FORM_STIFF_MASS_LOAD THE INDIVIDUAL ELEMENT STIFFNESS AND LOAD MATRICES WILL NOW BE FORMED. ELEMENT NO. : 2414 OF 2466 ENTRY SOUTION PRASE INCREMENT NO. : 1 ITERATION NO. : 1 DISPL. NORM : 0.100E+01 TOTAL ITERATION : 244 INCREMENT NO. : 1 ITERATION NO. : 2 DISPL. NORM : 0.118E-01 TOTAL ITERATION : 245 INCREMENT NO. : 1 ITERATION NO. : 3 DISPL. NORM : 0.255E-03 TOTAL ITERATION : 246
		K X

ree Menu 2 Tables 🛛 W

Works

Works Group Report

📑 Analysis Control Data

5. Set-Back for Saddle of Suspension Bridge

- In a multi-span suspension bridge, top tower saddle can be shifted relative to the tower before starting the cable erection.
- · Saddle can simulated using Elastic Link: saddle type.
- Boundary > Link > Elastic Link > Type: Saddle
- Load > Construction Stage > C.S Loads > Set-Back Loads for Nonlinear Construction Stage

6. Concurrent Forces of Beam Elements for Time History Analysis

- · Concurrent forces for time-history analysis.
- · Beam elements only.

7. Rail traffic loads to AS 5100.2

- 300 LA, 150 LA, User-defined rail traffic loads
- Different dynamic load allowances for bending moment and all other effects
- Load > Moving Load > Moving Load Code> Australia

8. Heavy Load Platform to AS 5100.2

• HLP320, HLP400, User-defined heavy load platform loads

Load > Moving Load > Moving Load Code> Australia

9. Rating Vehicles to AS 5100.2

• T44, L44, User-defined rating vehicle loads

Load > Moving Load > Moving Load Code> Australia

10. Horizontal Traffic Loads to AS 5100.2

· Centrifugal forces, traction and braking forces can be generated as static load cases .

11. Rating Vehicles to CS 454

- ALL Model 1 (normal traffic, 26 tonnes, 18 tonnes, 7.5 tonnes, 3 tonnes)
- Impact factor, traffic flow factor, lane factor
- Load > Moving Load > Moving Load Code> BS

12. Prestressed Girder Design to BS 5400

- Ultimate Limit State: Flexure, Shear, Torsion
- Serviceability Limit Stage: Stress, Crack

PSC > Design Para	ameter > <u>BS 5400</u>													
						ABC	DEFGH	I I J K L	. <u>M</u> N	ΟΡQ	RSTUN	/ W X Y 2	ZAAABACADAE	EAFAG
					1	1. Desig	n Condition							
					2	ľ	Design code	Elemer	nt I	Node(I/J)				
CELET CL				-	3		BS 5400-4:1990	16		1				
					4					-				
					-	Sec.	tion Properties							
					0	_ JC(Sortion 7	Tuno						
					6		Section 1	iype						
							Non-Comp	osite						
		Elem Part LCom Type CHK Uncracked/	V Vo (kN) (kN	C Vp	8	- Gro	ss section							
		31 [31] CLCB1 FX-MAX OK Uncracked	3697.7653 56	00.6276 1069.4979	- 9		н	3000.000 (mm)	Ag		6.209E+06 (mm ²	St	6.505E+09 (m	ım³)
C Design Parameters	×	31 J[32] CLCB1 FX-MAX OK Uncracked	4300.0696 67	18.8185 2089.7983	10		B	8500.000 (mm)	Ι _γ		7.867E+12 (mm ⁴	Sb	4.393E+09 (m	im ³)
arrian Cada I BC E400 4-1000		32 J[33] CLCB1 FX-MAX OK Uncracked	4994.0855 77	56.5974 3043.3164	11		C _{zp} 1	1209.410 (mm)						
Esgi cole . 55 5400-4:1990 V		33 [33] cLCB1 FX-MAX OK Uncracked	5096.0264 77	56.3981 3043.1926 77.3702 3999.5325	12		C _{zm} 1	1790.590 (mm)						
Input Parameters		34 [34] CLCB1 FX-MAX OK Uncracked	5783.4813 86	76.4566 3898.9226	13	- Trar	sformed section							
User Input Data Modify Design Param	eters	34 J[35] CLCB8 FZ-MAX OK Uncracked	6490.1368 64 6489.9510 64	86.1565 2029.9368	14		н з	3000.000 (mm)	A ₂		6.439E+06 (mm ²	St	6.790E+09 (m	1m ³)
Principal Stress Limitation	Complexities Change	35 J[36] CLCB8 FZ-MAX OK Uncracked	7429.1805 44	29.1410 291.5115	15		в	8500.000 (mm)	L.		8.116E+12 (mm ⁴	Sh	4.497E+09 (m	1m ³)
Serviceability Limit States	Construction Stage	36 I[36] CLCB9 FZ-MIN OK Uncracked	-7798.3355 44	28.9545 291.4776	16		c 1	1195 243 (mm)	,				(··	
Comp. 20 N/mm ²	Comp. 20 N/mm ²	37 [37] CLCB9 FZ-MIN OK Uncracked	-6962.4360 51	52.5049 963.1935	10		C 1	1904 757 (mm)						
Tens. 1 N/mm ²	Tens. 1 N/mm ²	37 J[38] CLCB1 FX-MAX OK Uncracked	-5996.8881 64	86.6041 2181.7369	17		-zm	1804.737 (11111)						
		38 J[39] CLCB1 FX-MAX OK Uncracked	-5283.1850 89	26.0487 3678.6885	18									
Output Parameters		39 [[39] CLCB1 FX-MAX OK Uncracked	-5587.7388 89	25.3904 3678.2591 83.8478 3652.2015	19	Par	tial Safety Factors							
Serviceability Limit States	Ultimate limit states	40 [[40] CLCB1 FX-MAX OK Uncracked	-4887.5397 77	26.5373 2895.2502	20	- Parti	al Safety Factors fo	or Ultimate Lim	it State					
Concrete stress imitation at Construction Stane	Shear registance	40 J[41] CLCB1 FX-MAX OK Uncracked 41 [41] CLCB1 FX-MAX OK Uncracked	-3865.8775 71 -4166.7548 71	47.4793 2354.1593 46.7462 2353.7085	- 21				Cha	aracteristic				
Principal stress under service loads		41 J[42] CLCB1 FX-MAX OK Uncracked	-3177.8515 56	22.5204 968.4353	22	γm	for Concrete			1.5				
Principal stress at Construction Stage		42 [42] CLCB1 FX-MAX OK Uncracked 42 J[43] CLCB1 FX-MAX OK Uncracked	-2272.7099 56	22.1340 968.2604 11.5058 59.1826	23	γm	for Reinforce/Pre	stress		1.15				
Tensile stress for prestressing steel		43 [43] cLCB1 FX-MAX OK Uncracked	-1725.7820 46	11.4441 59.1790	24									
		43 J[44] CLCB1 FX-MAX OK Uncracked 44 [[44] CLCB1 FX-MAX OK Uncracked	-11/8.816/ 45 -1178.8348 45	48.8947 11.5920 48.8863 11.5920	25	- Parti	al Safety Factors fo	or Serviceability	v Limit Si	ate				
	Select All Unselect All	44 J[45] cLCB1 FX-MAX OK Uncracked	-631.8694 45	21.4062 2.0371	26		,							
	P	45 J[46] CLCB1 FX-MAX OK Uncracked	-84.9151 45	02.6167 2.7656	27		Type of Stress	s	γ _{mc} for c	oncrete				
	OK Cancel	46 [[46] CLCB1 FX-MAX OK Uncracked	-84.9273 45	02.5904 2.7656	21	Tr	iangular Compress	tive	1	15				
		46 J[47] CLCB1 FX-MAX OK Uncracked	462.0301 45	00.7999 21.8327	20		iangular compress		1.	23				
		47 J[48] cLCB1 FX-MAX OK Uncracked	1008.9965 48	52.9981 356.1016	29	-	morm compressive	e	1.	67				
PSC Desig	n Parameter	(b) Shear Strength	1000.0100 40	<	+ 30	Pr	e-tension		1.	25				
<u></u>		Check Flexure Strength Check Flexure Strength Check She	ar Strength	0 0 0	31	Pc	st-tension		1.	55				+
					32									$\downarrow \downarrow \downarrow$
					33	Ma Ma	terial							
		PSC Design R	Result Table		34	- Conc	rete							
		Designi												
									PSC_L)esign [Detail Repo	ort		

13. Improvement of Bridge Assessment to CS 454

- Serviceability limit state check for Class 3 type section
- Ulltimate limit state check and serviceability limit state check for unbonded tendons

Rating > Bridge Rating Design > CS 454/19

Section

	Element	Part	Class	Rating Case	Load Effect	sig_c (N/mm²)	sig_c_lim (N/mm²)	sig_t (N/mm²)	sig_t_lim (N/mm²)	A	Check		Æ			
	12	J[14]	Class 3	SLS1_Fzz(Min)	Positive	15.2245	25.0000	-7.9229	-11.5705	1.4604	ОК					
	12	J[14]	Class 3	SLS1_Mxx(Max)	Positive	15.2245	25.0000	-7.9229	-11.5705	1.4604	ОК					
C	12	J[14]	Class 3	SLS1_Mxx(Min)	Positive	15.2245	25.0000	-7.9229	-11.5705	1.4604	ОК					
for Assessment Check 🛛 🗸 📖	12	J[14]	Class 3	SLS1_Myy(Max)	Positive	17.2856	🖌 A 🛛 B	C D E F	GHIJ	K L M	NOPQ	R S			4	
	12	J[14]	Class 3	SLS1_Myy(Min)	Positive	8.1046	271 5.Servic	eability Limi	t State for a S	ection						
	12	J[14]	Class 3	SLS1_Mzz(Max)	Positive	8.1046	272 Class	3 Limit Check								
	12	J[14]	Class 3	SLS1_Mzz(Min)	Positive	8.1046	273 •	Check If Stress	ses are Within	Class 3 Limits						
	13	[14]	Class 3	SLS1_Fxx(Max)	Positive	15.6500	274	* For Bond	ed Tendons							
	13	[14]	Class 3	SLS1_Fxx(Min)	Positive	8.1046	275	Compression	1							
d/Replace 🔾 Delete	13	[14]	Class 3	SLS1_Fyy(Max)	Positive	8.1046	276 - Sen	vice limit load	combination :	SLS1						
	13	[14]	Class 3	SLS1_Fyy(Min)	Positive	8.1046	277 - Sen	vice limit load	combination ty	pe: MY-MA	х					
	13	[14]	Class 3	SLS1_Fzz(Max)	Positive	16.5127	278									
ND	13	[14]	Class 3	SLS1_Fzz(Min)	Positive	15.2245	279	~ < 0	625 feu		25.00	(MD)				
// ·	13	[14]	Class 3	SLS1_Mxx(Max)	Positive	15.2245	280	Oc,min = 0	γ _{mc}	- Oc,limit -	23.00	(ivit)	"			
0.0.0.0.0	13	[14]	Class 3	SLS1_Mxx(Min)	Positive	15.2245	281									
	13	[14]	Class 3	SLS1 Myy(Max)	Positive	17.2856	282	Tension								
	13	[14]	Class 3	SLS1 Myy(Min)	Positive	8.1046	283 - Sen	vice limit load	combination :	SLS1						
	13	[[14]	Class 3	SLS1 Mzz(Max)	Positive	8,1046	284 - Sen	vice limit load	combination ty	pe: MY-MA	х					
Category	13	[[14]	Class 3	SLS1 Mzz(Min)	Positive	8.1046	285									
cougo, y	13	J[15]	Class 3	SLS1 Fxx(Max)	Positive	14.2445	286	σ < σ.	*DF + a	-	a	-11 31	()	Pal		
and 1	13	J[15]	Class 3	SLS1 Fxx(Min)	Positive	7.6422	287	Comax = 1	mu	, eoui	C, imit			-,		
355 1	13	J[15]	Class 3	SLS1 Fvv(Max)	Positive	7.6422	288									
200	13	J[15]	Class 3	SLS1 Fvv(Min)	Positive	7.6422	289 v	where,								
155 2	13	J[15]	Class 3	SLS1 Fzz(Max)	Positive	15.8003	290	σ _{c,max} : Ter	nsile stress on t	the prestresse	ed concrete					
	13	J[15]	Class 3	SLS1 Fzz(Min)	Positive	13.8680	291	=	-11.2	9 (MPa)						
BSS 3	13	.1[15]	Class 3	SLS1_Mxx(Max)	Positive	12 8885	292	σ _{c,min} : Co	mpressive stre	ss on the pres	tressed concrete					
	13	.1[15]	Class 3	SLS1_Mxx(Min)	Positive	12 8885	293	=	18.1	2 (MPa)						
	13	J[15]	Class 3	SLS1_Mvv(Max)	Positive	16 3155	294	σ _{limit} : Fle	xural tensile st	resses for cla	ass 3 members (T	able 25)				
n Type for Class 3	13	J[15]	Class 3	SLS1_Mvv(Min)	Positive	7 6422	295	=	-7.8	0 (MPa)						
	13	J[15]	Class 3	SLS1_Mzz(Max)	Positive	7 6422	296	DF : De	pth factor for c	lass 3 membe	ers based on the o	lepth of me	mber			
pe C : Pre-tensioned tendons	13	1[15]	Class 3	SLS1_Mzz(Min)	Positive	7 6422	297	=	0.7	0						
tributed close to the tension	10	I[15]	Class 3	SLS1_Exx(Max)	Positive	15 1026	298	A _{conc,T} : Are	a of concrete i	n tensile sect	ion					
albated close to the tension	14	[15]	Clase 3	SLS1_Fxx(Min)	Positive	7 6422	299	=	251932.1	8 (mm²)						
tes	14	[15]	Class 3	SLS1_Fxx(Max)	Positive	7 6422	300	A _{rebar,T} : Are	a of rebar in te	ensile section						
		101	01 0	CLC4_Ever(Min)	Desitive	7.0422	301	=	4909.0	0 (mm*)						
							302	σ _{rebar} : Inc	rease in the ter	nsile stress II	mit due to the pre	sence of ac	ditional r	eintorcemer	π	
Apply Close							204	=	5.6 [.]	5 (MPa)						
Apply Close			SL	S Reserve Factor	r Table		205	σ _{t,limit} : Fle	xurai tensile st	ress limit	- 14					
			3L				206	σ _{c,limit} : Fle	xural compres	sive stress lin	nit					
							207 -									
							200	since								
Class Category							308	$\sigma_{c,max} \leq \sigma_t$	Jimit	· · · · ·						
							309	$\sigma_{c,min} \leq \sigma_c$	Jimit		DK					

14. AASHTO LRFD 8th Design Standard – PSC/Composite Section, RC Section

- New AASHTO LRFD design standard can be applied to various design functions.
- RC, PSC Box, PSC Composite.

		1. Design Condition				
PSC > Design > AASE	HTO LRFD 17	Design Code	Elemen	t Node(I/J)		
5		AASHTO-LRFD2017	16	1		
View Structure Node/Ele	ment Properties Boundary Load Analysis Results PSC Pushover	 Section Properties 				
AASHTO LBED17 T	Interial Concrete Allowable Street Load Care Concentration Concentration	- Gross section	4 To	rsional design for a section		
Additio-Eki D17		H 117.992	(in) 			
Be Parameters	Perform Excel	6 492.120	(in) —	- Section type · Segmental-Box		
Segment	Assignment Design Report 🖓 PSC Result Diagram	C 75 134	(in)	- The Strength Limit Load Combina	tion · cl CF	31
Design Parameter	PSC Design Data PSC Design PSC Design Results	- Transformed section	(- Factored torsional moment	· T ₀ =	-111236.26 (kips·in)
		H 117.992	! (in)	- Factored shear force :	V. =	1809.62 (kips)
T : 1 00 (1 111)		B 492.126	(in)	- Factored moment :	Mu =	1012397.15 (kips·in)
l'orsional effects shall be in	nvestigated where:	C _{zp} 43.709	(in)	- Factored axial force :	N ₀ =	-12515.30 (kips)
		C _{zm} 74.283	(in)	- Resistance factor for shear :	Φ =	0.90
$T_u > 0.25 \phi T_{cr}$	(5.7.2.1-3)			- Component of prestressing force	in	
		Materials		direction of the shear force	V _p = Σ	Ans: f _{e/z-dir} = 413.49 (kips)
 For solid shapes: 		- Concrete				
		T ₀	1) Notation		
$-A^2$	5726 Maximum Spacing of Transverse	(KSI)				A ₀ = Area enclosed by the shear flow path,
$T_{cr} = 0.126 K \lambda \sqrt{f_c' - \frac{cp}{r}}$	Dein formennent	* B. : 0.85 iffc is lo	wert	A _o (p _h) Z _i		including any area of holes therein.
P_c	Keinforcement			1		= 35799.879 (in ²)
		- Prestressing steel inforr	matio		1	ph = Perimeter of the centerline of the closed
 For hollow shapes: 	The spacing of the transverse reinforcement shall	No Tondon	в		() A_(P	tranverse torsion reinforcement.
	not exceed the maximum permitted spacing, smax.	No. Tendon	T	cover 1	11	= 1113.426 (in)
	determined as:	1 S_L8_CS1	В		>>>>	Acp = Total area enclosed by outside perimeter
$I_{cr} = 0.126 K \Lambda \sqrt{J_c} 2A_o b_e$	determined as:	2 S_L2_CS1	В		*//	of the concrete section.
	If < 0.105 (1. down	3 S_L1_CS1	В	1/2	//	= 35799.879 (in ²)
in which:	• If $v_u < 0.125 f_c$, then:	4 S_R3_CS1	B		/	pc = The length of the outside perimeter of
	(5.7.2.6.1)	6 S R4 CS1	B			concrete section.
- f _{nc}	$S_{max} = 0.8a_v \le 24.0$ III. (3.7.2.0-1)	7 8 15 CS1	B			= 1113.426 (in)
$K = \sqrt{1 + \frac{1}{0.1262\sqrt{f'}}} \le 2.0$		8 S_R1_CS1	B			
V 0.120% V c	• If $v_u \ge 0.125 f'_c$, then:	9 S_R2_CS1	в 2) Checking Torsional Effects		
		10 S_L7_CS1	В	 Torsional cracking moment 	(T _{or}).	
	$s_{max} = 0.4d_v \le 12.0$ in. (5.7.2.6-2)	11 S_R7_CS1	В	b _e = 16.375 (in)	The effective	e thickness of shear flow path of elements
		12 S_L4_CS1	В	T _{or} = 0.126 K √f _c 2A _o b _e =	- 781714.14	4 (kips·in) (Eq. 5.7.2.1-5)
	where:	13 S_L3_CS1	В			
	WHELE.	14 S_R8_CS1	В	$T_u = -111236.262$ (kips·in	i) ≤ 0.25ΦT	ar = 175885.68 (kips·in) (Eq. 5.7.2.1-3)
	1 4 1 1 4 1 1 1 1 1	15 S_K0_CS1	B	$\therefore T_u \le 0.25 \Phi T_{cr}$, Ignore Tors	ional Effects.	
	v_u = snear stress calculated in accordance with	* d : Distance from	n evtr			
	Article 5.7.2.8 (ksi)	up . Distance iron	- CAU	Check combined torsional and	dishear	(Eq. 5.12.5.3.8c-6)
	d_{y} = effective shear depth as defined in				0.00 ()	ksi) ≥ 0.474 √f° = 0.00 (ksi) OK
	Article 5.7.2.8 (in)			D _V O _V 2A ₀ D _e		

15. AASHTO LRFD 8th Design Standard – Steel Composite Section

- New AASHTO LRFD design standard can be applied to various design functions.
- Steel Composite
- Design > Composite Design > AASHTO LRFD 17

- Design > Composite Des	Sign > AASHTO - LRFD 17	Codo	AASHTO	L DED 2017					
		Flement	Additio	3					
View Structure Node/Element Properties	Boundary Load Analysis Results PSC Pushover Design Rating Query	Position		1					
AASHTO-LRFD12(US) AASHTO-LRFD17(US)	SSRC79 * AASHTO-LRFD17 * 📊 🕥 SNIP 2.05.03-84* *	Moment Type	R	0.000					
Common Steel Design -	SRC Design * 🛱 Composite Design *	Woment Type		cam					
Para. *	for Design Batch Design	L Design Condition (Positi							
· · · · ·	Design	1. Section Properties	ve nexure)						
Design Parameters	Composite Steel Girder Design Parameters	1) Slab Properties							
Design Material	Code : AASHTO-LRFD17 - Update by Code	B. = 240.000 ir	n			1			
		t. = 10.000 ir	n				F		7
En Load Combination Type	Strength Hesistance Factor Besistance factor for ujelding (Phi u) 0.95	t. = 5.000 ir	n			-			
🖅 Longitudinal Reinforcement	Besistance factor for fracture(Phi u)	f_' = 3.000 ks	i			-			
Transverse Stiffener	Becistance factor for avial come (Philic)	E. = 3155.924 ks	si			-			
	Bocistoneo factor for flovuro (Pbi f)	A _r = 0.000 in	z			-			ĺ –
	Posistance factor for shoer/Dbi u)	F _{vr} = 40.000 ks	si			-			
Design Position	Resistance factor for shear exponenter/Philles)					1			
Position for Design Output		2) Girder Properties				-			
	Resistance factor for bearing(Pfil_D)	[Section]							
	Girder Type for Box/Tub Section	b _{fc} = 130.000 ir	n b _{ft} =	106.000) in	-			
Fatigue Parameters	Single Box Sections Multiple Box Sections	t _{fc} = 3.000 ir	n t _{ft} =	1.300) in				
😴 Curved Bridge Info	Consider St, Venant Torsion and Distortion Stresses	D = 130.384 ir	n t _w =	1.500) in				
Deck Overhang Loads	Option For Strength Limit State	H = 134.300 ir	n						
	Appendix A6 for Negative Flexure Resistance in Web Compact / NonCompact Sections								
Design Tables 🔹 🕨	Mn<=1,3RhMy in Positive Flexure and Compact Sections(6,10,7,1,2-3)	Position	Material	Thick(in)	f _y (ksi)	f _u (ksi)		Note	
_	▼ Post-buckling Tension-field Action for Shear Resistance(6, 10, 9, 3, 2)	Compression Flange	A36	3.000	36.000	58.000			
🐮 Design	Design Parameters	Tension Flange	A36	1.300	36.000	58.000		less than 2	2 in.
Truck Danast	Strength Limit State-Flexure	Web	A36	1.500	36.000	58.000		less than 2	2 in.
Excel Report	Strength Limit State-Shear								
Design Result Tables	Service Limit State	[Design Strength]							
besign result rubies	Constructibility	F _{ye} = 36.000 ks	i (Compress	sion Flange Y	ield Streng	jth)			
🖶 Design Result Diagram	Shear Connectors Longitudinal Stiffeners, Bearing Stiffener	F _{yw} = 36.000 ks	i (Web Yield	d Strength)					
		F _{yt} = 36.000 ks	i (Tension F	lange Yield S	trength)				
		E _s = 29000.000 ks	i (Elastic Mo	odulus of Ste	el)				
		3) Transverse Stiffener P	roperties						
	OK Cancel	Position Type	f _y (ksi)	H(in)	В	(in)	t _w (in)	t _f (in)	(
		Web 1Side	35.000	10.0	00	10.000	2.000	2.000	
	acign Daramatara				cian De	nort -			
	esign Parameters			Excerbe	esign Re	port			

d₀(in)

100.000

16. AASHTO LRFD 8th Load Combination – Auto Generation

- Load factors of extreme event.
- Load factors of fatigue .
- Result > Load Combinations > AASHTO LRFD 17

																			Lo	ad Comt	binatior	ns									
Table 3.4.1-1—I	.oad Co	ombinatio	ns and Lo:	nd Factor	' 5															Genera Load	al Ste I Comb	el Desig bination	ın Con List	icrete D	esign SR	RC De	esign Co	imposite S	iteel Giro	der Des Lo:	sign
Load Combination Limit State Strength I (unless noted) Strength II Strength IV Strength V	DC DD DW EH EV ES EL PS CR SH γ_p γ_p γ_p	LL IM CE BR PL LS 1.75 1.35 -	WA WA 1.00 1.00 1.00 1.4 0 1.00	S WZ 	FR 1.00 1.00 1.00	TU 0.50/1.2 0.50/1.2 0.50/1.2 0.50/1.2		; SE ; Yse ; Yse ; Yse ; Уse	<i>EQ</i> — — —	BL	L IC 		Time T CF 	/							No 1 2 3 4 5 6 7 7 8 9 10 11 11	Name scLCB scLCB scLCB scLCB scLCB scLCB scLCB scLCB scLCB scLCB scLCB scLCB	e Ac 1 Stre 2 Stre 3 Stre 4 Stre 5 Stre 6 Stre 7 Stre 8 Stre 9 Stre 1 Stre 1 Stre 1 Stre 1 Stre	engt engt engt engt engt engt engt engt	Type Add Add Add Add Add Add Add Add Add Ad		Desc Strength-I: Strength-I: Strength-I: Strength-II: Strength-II: Strength-II: Strength-III: Strength-	ription 1.75M[1], 1.75M[2], 1.75M[2], 1.75M[2], 1.75M[2], 1.35M[1], 1.35M[2], 1.35M[2], 1.35M[2], 1.35M[2], 1.35M[2], 1.35M[2], 1.10W[1], 1.	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5		LoadCase Factor Strength(MV) 1.7500 Temperature Fall(ST) 0.5000 Dead Load(CS) 1.2500 DC2(CS) 1.2500 Automatic Generation of Load Combinations \$\$\$ Option Add Replace Code Selection Steel Concrete SRC Steel Composite
Strength V	Υ _p	1.55 7EO	Table 3	.4.1-1—I	.oad Cor	mbination	is and I	Load Fa	ctors												13	scLCB	1 Stre	engt	Add	S	Strength-III	I:1.0W[2],	0.5		Design Code : 🛛 🗛 AASHTO-LRFD17 🚽 📖
Event I Extreme Event II Service I Service II Service IIV Fatigue I— LL, IM & CE	γ _p 1.00 1.00 1.00 1.00 	0.50 1.00 1.30 0.80 1.50	Comb imi Strong (unlet	oad ination t State th I s noted)	DC DD DW EH EV ES EL PS CR SH	LL IM CE BR PL LS 1.75	WA .00	WS	WZ	FR 1.00	TU 0.50/1.20	<u>Τ</u> 0 γπ	3 SE 6 УѕЕ	EQ —	BL		<u>CT</u>				15 16 17 18 19 20 21 22	scLCB scLCB scLCB scLCB scLCB scLCB scLCB scLCB	1 Stre 1 Stre 1 Stre 1 Stre 1 Stre 2 Stre 2 Stre 2 Stre 2 Stre	engt engt engt engt engt engt engt engt	Add Add Add Add Add Add Add Add Add	S S S S S S S S S S	Strength-III Strength-III Strength-III Strength-III Strength-III Strength-III Strength-III	I:-1.0W[2] I:-1.0W[2] I:1.0W[3], I:1.0W[3], I:-1.0W[3], I:-1.0W[3] I:-1.0W[3] I:1.0W[4], I:1.0W[4],	,0.5 ,0.5 0.5 ,0.5 ,0.5 ,0.5 0.5 0.5 ▼		Manipulation of Construction Stage Load Case
only Fatigue II—	-	0.75	Streng Streng	th II th II	<u>үр</u> Үр	1.35 1 - 1	.00	1.00	-	1.00 1.00	0.50/1.2	0 γπ 0 γπ	G ΥSE G YSE	-	-	-	-	-		Co	ру		Import	.] [Auto Ge	enera	ation	Sprea	d Sheet	Form	= 🛨 🗖 Seismic Load Combination
only			Streng Streng Event Event	th IV th V ne I ne	γ _p γ _p 1.00	- 1 1.35 1 γzφ 1 0.50 1	.00 .00 .00			1.00 1.00 1.00	0.50/1.20	0 — 0 γπ —	- <u>-</u> G γsε - <u>-</u>	1.00						File Na	me: C	D:₩test						Bro)wse		Load Factor for Settlement : 1 Structural Plate Box Structures(Metal Box Culverts)
			Event Servic Servic	е I е II е III	1.00 1.00 1.00	1.00 1 1.30 1 γ _{LL} 1	.00	1.00	1.00	1.00 1.00 1.00	1.00/1.20 1.00/1.20 1.00/1.20	0 γπ 0 — 0 γπ	G <u>γse</u> G γse	-	-	-	-	-													Live Load Factor for Service III : 0.8 Condition for Temperature
			Servic Fatigu LL, IM only Fatigu LL, IM only	e IV e I— 1 & CE e II— 1 & CE	1.00	— 1 1.75 0.80	.00	1.00 —	-	1.00 —	1.00/1.20	0 -	- 1.00	-	-	-	-	 													Detormation Check
						Cha	nges	s of I	_oad	l Fac	ctors														_	Aut	tomat	ic Gen	erati	on o	of Load Combination

17. Orthogonal effect of Seismic Load: AASHTO LRFD

• Orthogonal effect of seismic loads can be included in the auto-generation of load combination to AASHTO-LRFD 16 & 17.

Load Combinations -	
General Steel Design Concrete Design SRC Design Composite Steel Girder Design	Automatic Generation of Load Combinations
Load Combination List Load Cases and Factors	r In
	Code Selection
	Steel Concrete SBC Steel Composite
	Manipulation of Construction Stage Load Case
	ST Only CS Only ST+CS Set Load Cases for Orthogonal Effe
	S1 : Static Load Case CS : Construction Stage Orthogonal Loads Group
	Load Modifier : 1 O Comb or
	- Load Factors for Permanent Loads (Vn)
	- Define Orthogonal Load Case
×	✓ Longitudinal X-dir(RS)
Copy Import, Auto Generation, opread Street Form Copy Into Steel Design	Live Load
Name: D:₩95 기획₩2020_상반기₩EN_AASHTO Orthogor Browse Make Load Combination Sheet Close	Load Case : MV ~ Transverse Y-ur(ns)
	Load Factor : 0,5 Vertical Z-dir(RS)
d Combinations -	
eneral Steel Design Concrete Design SRC Design Composite Steel Girder Design	Muy of Num Long, Tran,
Load Combination List Load Cases and Factors	Modify 1 X-dir(Z
No Name Active lype Description ^ LoadCase Fact 1 gLCB1 Active Add Strength:1:25DC+1.5D ▶ 자중(ST) ▼ 1.0	n in Contraction C
2 gLCB2 Active Add Strength-II:1.25DC+1.5 단간(ST) 1.0 3 gLCB3 Active Add Extreme-I::1.0DC+1.0D 2자사하줄(ST) 1.0	
4 gLCB4 Active Add Extreme-I::1:0DC+1.0D MV(MV) 0.5i 5 gLCB5 Active Add Extreme-I::1:0DC+1.0D Z-dir(RS) 1.0i	🚾 Consider Orthogonal Effect (100 : 30 Rule)
6 gLCB6 Active Add Extreme-I::1.0DC+1.0D *	Set Load Cases for Orthogonal Effect, Add Modify
8 gLCB8 Active Add Extreme-I::1.0DC+1.0D 9 gLCB9 Active Add Extreme-I::1.0DC+1.0D	
10 gLCB10 Active Add Seismic:1.25DC+1.5D 11 gLCB11 Active Add Seismic:1.25DC+1.5D	Load Factor for Settlement : 1 OK
12 gLCB12 Active Add Seismic:1.25DC+1.5D 13 gLCB13 Active Add Seismic:1.25DC+1.5D	Structural Plate Box Structures(Metal Box Culverts)
14 JLCB14 Active Add Seismic:1.25DC+1.5D 15 gLCB15 Active Add Seismic:1.25DC+1.5D	Live Load Factor for Service III: 0,8 Define Orthogonal RS I
1b gLCB1b Active Add Seismic:1.25DC+1.5D 17 gLCB17 Active Add Seismic:1.25DC+1.5D	Condition for Temperature
18 gLCB18 Active Add Seismic:1.25DC+1.5D 19 gLCB19 Active Add Seismic:1.25DC+1.5D	O Deformation Check
20 gLCB20 Active Add Seismic:1.25DC+1.5D 21 gLCB21 Active Add Seismic:1.25DC+1.5D	
22 gLCB22 Active Add Seismic:1.25DC+1.5D	OK Cancel
Copy Import,, Auto Generation,,, Spread Sheet Form Copy into Steel Design	
	Define Colored Combination

18. RC Design as per IRS specifications

- Reinforced Concrete Design as per IRS is now available. RC Beam Design, Beam Checking, Column Design and Column Checking can now be performed for IRS.
- The Graphic/Detailed reports which include both Ultimate Limit State and Serviceability Limit State checks as per IRS Specifications can be generated.

	No:160 V 🚔 Print All 🖅 Close 🖬 Save	🚰 MIDAS/Text Editor - (RCC T girder IRS RC design.rcs) — 🗆 🗙
		🚰 File Edit View Window Help 🖉 🛪
Design > RC Design > IRS	1. Design Information	D 🗳 🖬 🚳 🖪 🐰 🛍 🖻 📕 🛤 🚔 🗠 😂 📕 🥠 🐎 🐎 👐 🗛 🕂 🔁 🕫 🔁 🖻 🗧 🛜
	Member Number : 160	00283 MIDAS/Civil - RC-Beam Design [IRS] Civil 2020
	Design Code : IRS	00284
	Unit System : kN, m	00208 *.MIDAS/Civil = RC-BEAM Analysis/Design Program.
	Material Data : fck = 30000, fy = 500000, fyw = 500000 KPa	00287 00288 + PROTECT -
	Beam Span : 0.472727 m	00209 *.DESIGN CODE : IRS, *.UNIT SYSTEM : kN, m
	Section Property : mid (No : 1)	00270 *.MEMBER : Member Type = BEAM, MEMB = 160 00271
	2 Section Diagram	00272 *.DESCRIPTION OF BEAM DATA (ISEC = 1) : mid
		00273 Section Type : Tee-Section (TEE)
		02275 Section Depth (Hc) = 1.455 m.
		00276 Section Width (Bc) = 0.300 m.
		0278 Depth of Flange (hf) = 0.250 m.
	H No:187 ✓ ∰ Print ∰ Print All ∰ Close ■ Save	00281 (Inc. Carlos Carl
		00282 Phile Edit View Window Help
	BUILLOUGHANDING STIMPJE : No Exclud	
	1. Design Condition	00285 00284 MIDAS/Civil - RC-Column Design [IRS] Civil 2020
	Design Code IRS	00287 00286
	Unit System kN, m	00288 00266 *.MIDAS/Civil - RC-COLUMN Analysis/Design Program.
	3 Bending Moment Capacity Member 187	00290 00268 *.PROJECT :
	Material Data fok = 30000, fy = 500000 KPa	n 00291 00289 *.DESIGN CODE : IRS, *.UNIT SYSTEM : NN, m
	Column Height 4.75 m	02293 00271 - MEMBER . MEMBER 1996 - COLONIN, MEMB - 107, DCB - 367, POS - 0
	Section Property Price (No. 12) (c) Load Combination No. Reber Pattern Total Rebert Area Ast = 0.0113097 m ⁴ 2 (Rhost = 0.0100)	00294 00272 *.DESCRIPTION OF COLUMN DATA (ISEC = 12) : PIER
	Factored Strength (M_Rd)	CO298 CO274 Column Height (L) = 4.750 m.
	Check Ratio (M_Ed/M_Rd) 2. Applied Loads	00297 00276 Section Type : SOLID ROUND (SR)
	Load Combination 36+ AT (J) Point	00279 00277 Section Diameter (D) = 1.200 m. 02299 00277 Concrete Strength (fck) = 30000,000 KPa.
	Positive Moment (M_Ed) N_Ed = 2035.00 kN, M_Edy = 246.587, M_Edz = 1862.67, M_Ed = 1878.92 kN-m	00300 = 00278 Main Rebar Strength (fy) = 500000.000 KPa.
	(+) Load Combination No.	00279 Ties/Spirals Strength (fyw) = 500000.000 KPa.
	Charle Battle (MERA) 5. AXIAI FOICES and Moments Capacity Check	00303 00281
	Concentric Max, Axial Load N, Edha Pal - 2038 00 (1755 50 - 2047) 41000 OK	00282 *.REINFORCEMENT PATTERN : 00283 CONFERE COLD R. (do) = 0.065 m
	Attail Load Nation P_CUP_R1 = 2050/17/03 = 0.427 < 1.000 OK Moment Ratio M Edv/M Ray = 246 587 /578.278 = 0.426 < 1.000 OK	00284 Total Rebar Area = 0.01131 m ⁻ 2.
	MEdz/M_Rdz = 1862.67 / 4361.91 = 0.427 < 1.000	00286
	M_Ed/M_Rd = 1878.92 / 4400.07 = 0.427 < 1.000 OK	00287 - lies : Fallure
Concrete Design Code	X 4. P-M Interaction Diagram	00290 ==================================
	N(kN)popp	00291
Design Code : TDS	3550 Trietar 22.43Deg. N_Rd(kN) M_Rd(kN-m)	00283 (). Factored forces/moments caused by unit load case. Unit : km., m. 00283 *.Load combination ID = 364
Design Code : IRS V	NA=82.46Deg. 39244.78 0.00	00294
Apply Special Provisions for Seismic Design	35689.30 1608.83	00296 Load Case N_Ed_max My1 My3 M21 M23 00296
	30608.49 3591.27	00297 DL 2070.96 -1.03 -5.29 0.00 0.00
Moment Redistribution Factor for Beam :	1 25788.21 4874.66	00299 LL -6.43 0.00 0.00 1120.50 1109.33 00299 DL+LL 2064.53 -1.03 -5.29 1120.50 1109.33
	16250 21810.48 5579.97	00300 Others -29.52 48.47 251.88 304.79 753.34
Torsion Design	11500 1802.82 5931.38	00301
	8750 13940.09 5952.35	00303
OK	Close 2000 (4700,4400) 11488.38 5744.15	00304
	-2750 M(kN-m) 8463.42 5280.91	00308 End Moments (My1) = 1.03 kN-m.
Code option for IRS RC Design	Graphic report for Beam and Column design	Detailed report for Beam and Column Design
Code option for its ite Design	Graphic report for Beam and Column design	Detailed report for beam and column Design

19. Polish Design Report

Poland Design Report applied in PSC Box&Composite, Steel Composite in Eurocode

Position Infor 1.Przypadek ty 1.1 Paramet - Współ Przypad Stały i z Wyjątko - Współ α _{ce} α _{ct}	mation wymiarowa cry wymiarow czynniki czę ki wymiarow mienny wy	I Inia vania gściowe dla S vania	GU da baten				OK	English
1.Przypadek ty 1.1 Paramet - Współ Przypad Stały i z Wyjątko - Współ α _{ce} α _{ct}	wymiarowa ry wymiarow czynniki czę ki wymiarow mienny wy	nnia vania ęściowe dla S vania	iGU				OK OK	Englion
1.Przypadek w 1.1 Paramet - Współ Przypad Stały i z Wyjątko - Współ - Uspół - Współ - Uspół - Uspół - Uspół - Uspół	wymiarowa cry wymiarow czynniki czę ki wymiarow mienny wy	nnia vania ęściowe dla S vania	iGU					Czech
1.1 Paramet - Współł Przypad Stały i z Wyjątko - Współ α _{co}	ry wymiarov czynniki czę ki wymiarow mienny wy	vania ęściowe dla S vania	GU					Polish
- Wspołł Przypad Stały i z Wyjątko - Współł α _{oc} α _{ct}	czynniki czę ki wymiarow mienny wy	esciowe dla S vania	iGU					
Przypad Stały i z Wyjątko - Współ α _{oc}	ki wymiarow mienny wy	vania	1/ dia beter			(EN 1992	-1-1:2004, 2.4.2.4	•)
- Współ α _{co}	mienny wy		Yo ula belon	u '	γs dla stali zbro	jeniowej y	, dia stali spręża	jącej
- Współ α _{oc} α _{oc}	wy			1.500		1.150	1	.150
-Współ α _{cc} α _{ct}				1.200		1.000	1	
- vvspoła a _{cc} a _{ct}	an maile e	a : war fir	munnik diugoti		under se	ta mala é é :	a éciekenie i =-i	inania
α _{ct}	= 0	, u _{ct} : wspołc 850 (dła	zymnik arugotermii wytrzymałości po	éciekor	wprywow na Wyl	i∠yma r os¢ i	ia sciskanie i zgi	name.
d _{ct}	- 0.	000 (dia 000 (dia	wyuzymatości na	rozciae	nie)			
	- 1.	dia (dia	wyuzymatości na	rozciąg	Jamej			
1 2 Informed	ie o przekro	in l						
1.2 Info	macie o	Przekr z	ast(cieg_zhrei)	Przek	kr. zas (Po ściel	0		
D	zekroiu	F120KI. 2)źwigar)	(D	źwigar + Płyta)			
Δ	(mm ²)	(*	515465 603		952336	200		
- Î.	(mm ⁴)	13	7162101892 318		224570272776	134		
	(mm)		-		512	636		
yst V-L	(mm)	+	-		212	636		
y 50	(mm)	-	543,286		212	636		
yt Ve	(mm)		806.714		1137	364		
Z	(mm ³)		-		438069976	161		
Zeh	(mm ³)		-		1056127262	797		
 Z,	(mm ³)		46047196.375		1056127262	797		
Zh	(mm ³)		189305140.655		197447956	212		
	(
1.3 Dane m	ateriałowe							l

umer elementu		2							Selec	t the lar	iguage for print,
ołożenie element	u	-							Lang	guage :	English
										OK	English
1 Przypadek wy	miarowa	nia								UK	- Polish
1.1 Parametry	do wymiai	rowania									
■ Współczynn	iki części	owe									
γc dla betonu			0.60	yy dla	sworzi	nizłbem				1.10	-
γ _S dla stali zbr	ojeniowej		0.70	YFf dla	ı równo	w. zakresu zm	ienności	naprężeń o s	t	0.90	
γ _{M0} dla stali ko	nstrukcyjr	-	0.80	YMf dla	a wytrz	ymałości zmęc	zeniowej			0.80	
γ _{M1} dla stali ko	nstrukcyjr		0.90	YMf,s C	la wytr	zymałości zmę	czeniowe	ej przy ściani	L	0.70	
1.2 Dane mater	riałowe										
Stal konstru	kcyjna										
f _{sk} =	440.000	MPa	Es	=		210000.000	MPa				
- Datas											
f	40.000	MDa	F	_		35000.000	MDo				
ick -	40.000	IVIF a	Lor	n –		33000.000	IVIF a				
■ Zbrojenje											
fuk =	400.000	MPa	E,	=		210000.000	MPa				
.74			_								
1.3 Informacie	o przekroj	u									
	<u> </u>										
					В			_			
		[
	_					· · · · · · · · · · · · · · · · · · ·		5.75			
	8			1994	1994			<u>.</u>			
							1				
				_	В	c .	dtop				
							Ϊ.				
							1				
							bot				_
							Ð				
							5				
				1		, I					
				-	b	· •					